
169

Chapter

13

TIME-INTERVAL
MEASUREMENTS

13.1 OVERVIEW

A task common to many microcontroller applications is the measurement of a time interval. This
might be an internally generated interval such as the duration of a subroutine. It might be the interval
between two edges of a waveform, or between the edge of a “triggering” signal and the delayed out-
put edge of a responding device. The PIC18F452 offers superb capabilities for carrying out time-
interval measurements. This chapter will be devoted to this widely used and fundamentally important
topic.

13.2 TIMER1 AND INTERNAL MEASUREMENTS

For internal time-interval measurements, the circuitry of Timer1, shown in Figure 13-1a, is quite simi-
lar to that of Timer0, shown in Figures 5-1 and 5-2. Not shown is the optional use of an external clock
input, to be discussed in Section 20.10. Also not shown is Timer1’s overflow flag and interrupt mecha-
nism, which will be discussed in Section 13.4, to extend timing measurements to time intervals requir-
ing 3 bytes for their expression. Finally, Timer1’s interactions with its closely coupled CCP1 facility will
be deferred to Section 13.5 for external time-interval measurements.

Reads from, and writes to, the 16-bit TMR1H:TMR1L register are supported by the same mech-
anism used to read from and write to TMR0H:TMR0L. As was discussed in Section 5.2, at the precise
moment that the lower byte of the counter is read, the upper byte is copied into a buffer register. Thus,
a subsequent read of TMR1H will yield a correct value corresponding to the earlier moment when
TMR1L was read. This is true even if an intervening interrupt occurred, and the upper byte of the

13_PH_Peatman_861202 6/28/02 9:47 AM Page 169

170 Time-Interval Measurements Chapter 13

8-bit
counter

TMR1H
buffer register

(a) Counter configuration

(b) T1CON initialization

TMR1L
(8-bits)

Write to TMR1L
Read from TMR1L

Prescaler
�1, �2,�4, or �8

Internal
clock

(2.5 MHz)

T1CON 1 0

0

1
1
0

0

1
0
1

0 0 0 1
Enable Timer1 operation
Enable TMR1H buffer register operation
Use internal clock
Prescaler � 1
Prescaler � 2
Prescaler � 4
Prescaler � 8

Timing Maximum
Prescaler Resolution Measurement

÷ 1 0.4 �s 26 ms

÷ 2 0.8 �s 52 ms

÷ 4 1.6 �s 104 ms

÷ 8 3.2 �s 208 ms

(c) Role of prescaler

Figure 13-1 Timer1 for time-interval measurements.

counter (but not the buffer register) incremented between the read of TMR1L and TMR1H. Even with-
out an intervening interrupt, a read of TMR1L when its value is 0xff followed by a read of TMR1H
will yield the correct 16-bit value even though the upper byte of the counter (but, again, not the buffer
register) incremented between the two reads.

The maximum interval to be measured can be extended in either of two ways. The simpler of the
two is to initialize Timer1’s control register, T1CON, to select an appropriate prescaler value, as spec-
ified in Figures 13-1b and c. Selecting a divider value of 1 will yield time-interval measurements of up
to 26 milliseconds (with an internal clock of 2.5 MHz) having a measurement resolution of 0.4 mi-
croseconds, the internal clock period of the chip. Selecting a larger divider will yield a resolution of 3.2
microseconds for measurements up to 208 milliseconds.

In Section 13.4, Timer1 will be extended from its inherent 2-byte counter to a 3-byte counter by
incrementing a 1-byte RAM variable each time the 2-byte counter rolls over from 0xffff to 0x0000. This
will allow time-interval measurements to extend beyond 6 seconds, even with 0.4 microsecond reso-
lution.

One measurement of interest is the amount of time it takes to execute a specific subroutine. A more
useful measurement result, usually, is the maximum time it takes to execute the subroutine as its input
parameters are varied.

13_PH_Peatman_861202 6/26/02 3:17 PM Page 170

Section 13.2 Timer1 and Internal Measurements 171

Example 13-1 Microchip’s FXD0808U subroutine will divide an 8-bit unsigned number by an
8-bit unsigned number. It will be used to convert a number as large as 255 into an ASCII string,
using successive divides by 10. How long might an experiment take to check the published
maximum execution time of this subroutine for all parameter values when it is used to divide
a 1-byte number by 10?

Solution

The maximum execution time of the FXD0808U subroutine in this case can be found by try-
ing all 256 cases and picking out the maximum. Even if each trial takes the published maxi-
mum of 31 cycles (i.e., 12.4 microseconds) for all parameter values, the maximum time will
be found in 3.2 milliseconds.

Example 13-2 How long will it take to check the maximum execution time for all parameter
variations?

Solution

Even if the time to try each divisor possibility on all 256 dividend values takes 3.2 milliseconds,
the total time will be less than a second.

One of the crowning achievements of the engineering profession is its development of the very
tools needed to carry out its various design activities. Two tools of help here are a START macro and a
STOP macro that can be used in the code sequence

START
rcall FXDØ8Ø8U
STOP

to measure the execution time to the code between two macros. The START macro, listed in Figure
13-2b, simply copies the value read from TMR1H:TMR1L to the 2-byte RAM variable
TIMEH:TIMEL. The STOP macro of Figure 13-2c has a two-step job. First, it subtracts the value col-
lected by the START macro from a new “snapshot” of the timer, taken at the moment that the

subwf TMR1L,W

instruction is executed. Second, it subtracts a small correction, Magic. such that the sequence

START
STOP

produces a value of 0 in TIMEH:TIMEL.

Example 13-3 Determine the correction value, Magic.

Solution

One way to get this value is to run the START/STOP macros with no intervening code and with
Magic � 0. The small resulting value in TIMEL is equal to the required value of Magic. That
is, if the word Magic is replaced by this value, then the execution of START followed imme-
diately by STOP will yield a result of TIMEH:TIMEL � 0.

Another way to determine the value of Magic is to count cycles from the read of TMR1L
in the START macro to the read of TMR1L in the STOP macro. As shown in Figure 13-2d,
this produces Magic � 5.

13_PH_Peatman_861202 6/28/02 9:47 AM Page 171

172 Time-Interval Measurements Chapter 13

(a) Timing diagram for Example 13-3, to determine the value of Magic

Read
TMR1L

movff TMR1L, TIMEL movff TMR1H, TIMEH

START macro

movf TIMEL, W
subwf TMR1L, W

Write to
TIMEL

Read
TMR1H

Write to
TIMEH

Read
TIMEL

Read
TMR1L

� � �

� � �� � �

Magic � 5

STOP macro

TIMEL ;Lower byte of the time-interval measurement
TIMEH ;Upper byte

(a) Variables

START macro
movff TMR1L,TIMEL
movff TMR1H,TIMEH
endm

(b) START macro definition

STOP macro
movf TIMEL,W ;TIME = TMR1 � TIME
subwf TMR1L,W
movwf TIMEL
movf TIMEH,W
subwfb TMR1H,W
movwf TIMEH
movlw Magic ;Make correction
subwf TIMEL,F
btfss STATUS,C ;Skip if no borrow
decf TIMEH,F
endm

(c) STOP macro definition

Figure 13-2 START and STOP macro definitions

Measuring the maximum of successively collected time intervals requires that each new value be com-
pared with the previous high value. The new value is discarded until it exceeds the previous high, in which
case it becomes the new high. Figure 13-3 lists a MAX macro to form the maximum in MAXH:MAXL.

13.3 DISPLAYMAX SUBROUTINE

In this section, a DisplayMax subroutine will be developed. It will make use of two general-purpose util-
ity subroutines to carry out its function:

� CyclesToMicrosec—This subroutine converts the number of instruction cycles in the 3-byte
variable AARGB0:AARGB1:AARGB2 into microseconds. It assumes that each cycle lasts 0.4
microseconds. For its use within the DisplayMax subroutine, the 2-byte MAXH:MAXL will
be copied into AARGB1:AARGB2, the upper byte AARGB0 will be cleared, and then the

13_PH_Peatman_861202 6/26/02 3:17 PM Page 172

Section 13.3 DisplayMax Subroutine 173

MAXL ;Lower byte of the maximum time-interval
MAXH ;Upper byte

(a) Variables

clrf MAXL ;Start maximum time interval at zero
clrf MAXH

(b) Initialization

MAX macro
movf TIMEL,W ;Form MAX - TIME
subwf MAXL,W
movf TIMEH,W
subwfb MAXH,W
btfss STATUS,C ;If TIME > MAX, then update MAX with TIME
movff TIMEL,MAXL
btfss STATUS,C
movff TIMEH,MAXH
endm

(c) The macro definition

Figure 13-3 MAX macro definition.

CyclesToMicrosec subroutine will be called. The number of microseconds will be returned in
AARGB0:AARGB1:AARGB2.

� DecimalDisplay—This subroutine will take the 3-byte number in AARGB0:AARGB1:
AARGB2 and display its value (ranging from 0 to 6,710,886 microseconds) on the second line
of the QwikFlash display.

The CyclesToMicrosec subroutine of Figure 13-4 carries out the conversion

Microseconds � (Cycles/10) � 4

Microchip’s FXD2408U subroutine will divide the number of cycles in AARGB0:AARGB1:AARGB2
by the number 10 in BARGB0. It returns a quotient in AARGB0:AARGB1:AARGB2 and a remain-
der with a value between 0 and 9 in REMB0. The quotient is then multiplied by 2 by shifting it left one
place. Repeating this gives the needed

Quotient � 4

However, the remainder, REMB0, from the division by 10 when multiplied by 4 also contributes to the
total result. For example, if REMB0 � 4, then

REMB0 � 4 � 16

This should be rounded to the nearest multiple of 10,

REMB0 � 4 � 20

and then the tens digit added to

Quotient � 4

formed earlier. The CyclesToMicrosec subroutine treats the REMB0 value as a BCD number and dou-
bles it twice by adding it to itself twice, using BCD addition. Five is added to the result, using BCD ad-
dition, so that the tens digit will represent the correct rounded value. The units digit is cleared and the
tens digit is swapped to the units digit position in WREG. This is added to AARGB0:AARGB1:
AARGB2 to produce the final result.

13_PH_Peatman_861202 6/26/02 3:17 PM Page 173

174 Time-Interval Measurements Chapter 13

;;;;;;; CyclesToMicrosec subroutine ;;;
;
; This subroutine converts AARGBO:AARGB1:AARGB2 from cycles to microseconds.
; Microseconds = Ø.4 Cycles = (Cycles/1Ø)x4

CyclesToMicrosec
MOVLF 1Ø,BARGBØ ;Divide by 1Ø
call FXD24Ø8U
bcf STATUS,C ;Multiply by two
rlcf AARGB2,F
rlcf AARGB1,F
rlcf AARGBØ,F
rlcf AARGB2,F ;Do it again
rlcf AARGB1,F
rlcf AARGBØ,F
movf REMBØ,W ;Get remainder and double it
addwf WREG,W ; as a BCD number
daw
addwf WREG,W ;Double it again
daw
addlw 5 ;Round off
daw
andlw ØxfØ ;Keep just tens digit
swapf WREG,W ; and move it to the units position
addwf AARGB2,F ; and add it to AARG
clrf WREG
addwfc AARGB1,F
addwfc AARGBØ,F
return

Figure 13-4 CyclesToMicrosec subroutine.

The other general-purpose utility subroutine, DecimalDisplay, does a job similar to that of the
ByteDisplay subroutine of Figure 7-18e, which writes a binary representation of the variable, BYTE,
to the LCD. The DecimalDisplay subroutine writes a decimal representation of AARGB0:AARGB1:
AARGB2 to the second line of the display.

As shown in Figure 13-5, the DecimalDisplay subroutine divides the number by 10, converts the
one-digit remainder to ASCII, and inserts it into the string at the right-most character position. This is
repeated seven more times to fill the eight character positions of the string.

Next, leading zeros are blanked. The cursor-positioning code for the second line of the LCD is writ-
ten to the beginning of the string and the ‹EOS› character (0x00) is tacked onto the end of the string.
Finally, the string is sent to the display.

Given the CyclesToMicrosec and the DecimalDisplay subroutines as building blocks, the
DisplayMax subroutine to display the value of MAXH:MAXL is easily obtained. It is shown in
Figure 13-6.

13.4 EXTENDED INTERNAL MEASUREMENTS

The range of Timer1 can be extended by incrementing a 1-byte RAM variable, TMR1X (“Timer1 ex-
tension”), each time TMR1H:TMR1L overflows from 0xffff to 0x0000. At that moment, the TMR1IF
flag will be set, as shown in Figure 13-7, and can be used to generate either a high-priority or a low-
priority interrupt. If no other interrupt sources require fast service, then the simplicity of a single high-
priority interrupt service routine affords the solution shown in Figure 13-8.

13_PH_Peatman_861202 6/28/02 9:47 AM Page 174

Section 13.4 Extended Internal Measurements 175

;;;;;;; DecimalDisplay subroutine ;;;
;
; Display whatever is in AARGBØ:AARGB1:AARGB2 as a decimal number on line 2
; of the LCD

DecimalDisplay
lfsr Ø,BYTESTR+8
REPEAT_
MOVLF 1Ø,BARGBØ ;Divide AARG by ten
call FXD24Ø8U
movf REMBØ,W ;Get digit
iorlw Øx3Ø ;Convert to ASCII
movwf POSTDECØ ; and move to string
movf FSRØL,W ;Done?
sublw low BYTESTR

UNTIL_ .Z.

REPEAT_ ;Blank leading zeros
movlw A'Ø' ;ASCII code for zero
subwf PREINCØ,W ;Leading zero?
IF_ .Z. ;If so, then blank it
MOVLF A' ',INDFØ

ELSE_ ;Otherwise, done with blanking
BREAK_

ENDIF_
movf FSRØL,W ;In any case, stop at least-significant digit
sublw low BYTESTR+7

UNTIL_ .Z.

lfsr Ø,BYTESTR ;Set pointer to display string
MOVLF ØxcØ,BYTESTR ;Add cursor-positioning code
clrf BYTESTR+9 ;and end-of-string terminator
rcall DisplayV
return

Figure 13-5 DecimalDisplay subroutine.

;;;;;;; DisplayMax subroutine ;;;
;
; This subroutine takes MAXH:MAXL, converts it to microseconds, and displays
; it on the second line of the LCD.

DisplayMax
movff MAXL,AARGB2
movff MAXH,AARGB1
clrf AARGBØ
rcall CyclesToMicrosec
rcall DecimalDisplay
return

Figure 13-6 DisplayMax subroutine.

Reading the 3-byte value of TMR1X:TMR1H:TMR1L requires care to obtain a correct reading
under worst-case circumstances.

Example 13-4 Assuming that the 3 bytes are read in the order TMR1L, TMR1H, and then
TMR1X, give an example of an invalid reading.

13_PH_Peatman_861202 6/28/02 9:47 AM Page 175

176 Time-Interval Measurements Chapter 13

T1CON
1 0 0 0 0 1

� � � � � � �

0
0
1
1

0
1
0
1

P � 1
P � 2
P � 4
P � 8

TMR1ON � 1 : Enable clock input

Timer1 prescaler divider

TMR1X Overflow

TMR1H

RAM

Buffer register

8-bit counter8-bit counter

Prescaler
�P

P � 1, 2, 4, or 8
TMR1ON

FOSC/4
(internal clock)

TMR1L

PIR1

� � � � � � �PIE1

TMR1IF

TMR1IE

1 � � � � � � �RCON� � � � � �INTCON

Generate a
high-priority interrupt

Generate a
low-priority interrupt

GIEH GIEL

IPEN � 1 : Enable priority levels

Write to TMR1L
Read from TMR1L

Set

� � � � � � �IPR1
TMR1IP

Figure 13-7 Timer1 for extended time-interval measurements.

TMR1X ;Extension of TMR1

(a) Variable

bsf IPR1,TMR1IP ;Assign high priority to TMR1 overflow interrupt
bcf PIR1,TMR1IF ;Clear flag
bsf PIE1,TMR1IE ;Enable TMR1 overflow interrupts
bsf RCON,IPEN ;Enable high/low interrupt structure
bsf INTCON,GIEH ;Enable high priority interrupts to CPU
return

(b) Last six instructions of the Initial subroutine, setting up the high-priority interrupt

org ØxØØØ8 ;High priority interrupt vector
bcf PIR1,TMR1IF ;Clear flag
incf TMR1X,F ;and increment TMR1 extension
retfie FAST

(c) High-priority interrupt service routine

Figure 13-8 Incrementing TMR1X, the extension of TMR1H:TMR1L.

Solution

If the three registers are read in this order, and produce a hex value of 35:ff:ff, the correct value
is actually 34:ff:ff. The interrupt occurring as the hardware counter rolls over increments
TMR1X from 0x34 to 0x35. Therefore, by the time TMR1X is read, the wrong value is read.

13_PH_Peatman_861202 6/12/02 3:39 PM Page 176

Section 13.5 CCP1 and External Measurements 177

A solution to this ambiguity is to read the 3 bytes in the order TMR1X, TMR1L, TMR1H. If the most-
significant bit (MSb) of TMR1H is 1, then the TMR1X value is valid because it was read sometime dur-
ing the 32,768 counts before the overflow, when TMR1H:TMR1L was equal to B'1bbbbbbb bbbbbbbb'.
On the other hand, if the MSb of TMR1H is 0, the value of TMR1X has the possibility of being invalid.
This would be the case if the 3-byte hex number were read as 43:00:00 because the 0x43 was read first,
before the hardware counter rolled over. The correct value of the counter at the instant that TMR1L was
read is 44:00:00. A correct reading is assured when the MSb of TMR1H is 0 if TMR1X is simply read
again. Observe that the instruction sequence

movf TMR1H,W
movwf TIMEH

will set the STATUS register’s N bit if the MSb of TMR1H is set, while at the same time copying
TMR1H to TIMEH. These considerations lead to the STARTX macro of Figure 13-9c, which copies
the 3-byte TMR1 (i.e., TMR1X:TMR1H:TMR1L) to the 3-byte RAM variable TIME (i.e.,
TIMEX:TIMEH:TIMEL).

The STOPX macro determines the number of cycles that have been executed since the STARTX
macro was executed, putting this value into the 3-byte variable, TIME. It first reads TMR1 into
TMR1BUF. Then it subtracts TIME (collected by the STARTX macro) from TMR1BUF, putting the
result into TIME. Finally, it subtracts from TIME the “Magic number,” 9, so that the back-to-back
execution of

STARTX
STOPX

will produce TIME � 0.
The MAX3 macro ratchets the 3-byte MAX variable (i.e., MAXX:MAXH:MAXL) up to the max-

imum value of TIME. When a new value of TIME is formed, it is compared with the previous highest
value, located in MAX. If the new value of TIME is larger, this new value replaces the previous value
of MAX. Thus, the sequence

STARTX
‹code whose maximum duration is to be determined›
STOPX
MAX3

forms the maximum duration in MAXX:MAXH:MAXL.

13.5 CCP1 AND EXTERNAL MEASUREMENTS

The PIC18F452 includes a capture/compare/pulse-width-modulation facility called CCP1 that can be
closely coupled to Timer1 to measure time intervals between signal edges occurring on the RC2/CCP1
pin. Figure 13-10 illustrates the connection and its setup. With T1CON initialized to B'10000001' and
with CCP1CON initialized to B'00000101', both prescalers will be bypassed. The CCP1IF flag in the
PIR1 register will be set when a rising edge occurs on the CCP1 input pin. In addition, TMR1H:TMR1L
will be copied to CCPR1H:CCPR1L at that precise moment.

In the case of an internal time-interval measurement, the code to be executed to make the mea-
surement is executed automatically at the beginning of each measurement (with the START macro)
and at the end of each measurement (with the STOP and MAX macros). The CPU has all the time it
needs to do the task being measured.

13_PH_Peatman_861202 6/28/02 9:47 AM Page 177

TMR1X ;Extension of TMR1
TMR1LBUF ;Temporary buffer for TMR1L
TMR1HBUF ;Temporary buffer for TMR1H
TMR1XBUF ;Temporary buffer for TMR1X
TIMEL ;Lower byte of the time-interval measurement
TIMEH ;Upper byte
TIMEX ;Extension byte
MAXL ;Lower byte of maximum measurement
MAXH ;Upper byte
MAXX ;Extension byte

(a) Variables

clrf MAXL ;Start maximum time interval at zero
clrf MAXH
clrf MAXX

(b) Initialization

STARTX macro ;Save TMR1 in TIME
movff TMR1X,TIMEX
movff TMR1L,TIMEL
movf TMR1H,W ;Copy TMR1H to TIMEH and copy bit 7 to N
movwf TIMEH
btfss STATUS,N ;Does TMR1 = B'Øbbbbbbb bbbbbbbb'?
movff TMR1X,TIMEX ;If so, then reread TMR1X
endm

(c) STARTX

STOPX macro ;Form TIME = TMR1 - TIME
movff TMR1X,TMR1XBUF ;Form valid reading in TMR1BUF
movff TMR1L,TMR1LBUF
movf TMR1H,W
movwf TMR1HBUF
btfss STATUS,N ;Does TMR1 = B'Øbbbbbbb bbbbbbbb'?
movff TMR1X,TMR1XBUF ;If so, then reread TMR1X

movf TIMEL,W ;Form TIME = TMR1BUF - TIME
subwf TMR1LBUF,W
movwf TIMEL
movf TIMEH,W
subwfb TMR1HBUF,W
movwf TIMEH
movf TIMEX,W
subwfb TMR1XBUF,W
movwf TIMEX

movlw 9 ;Magic = 9; Make correction
subwf TIMEL,F
btfss STATUS,C
decf TIMEH,F
btfss STATUS,C
decf TIMEX,F
endm

(d) STOPX

MAX3 macro
movf TIMEL,W ;Form MAX - TIME for three-byte numbers
subwf MAXL,W
movf TIMEH,W
subwfb MAXH,W
movf TIMEX,W
subwfb MAXX,W ;C=Ø if TIME > MAX
btfss STATUS,C ;Replace MAX with TIME if C=Ø
movff TIMEL,MAXL
btfss STATUS,C
movff TIMEH,MAXH
btfss STATUS,C
movff TIMEX,MAXX
endm

(e) MAX3

Figure 13-9 STARTX, STOPX, and MAX3 macros.

178

13_PH_Peatman_861202 6/28/02 9:47 AM Page 178

Section 13.5 CCP1 and External Measurements 179

PIR1

� � � � � � �PIE1

CCP1IF

CCP1IE

1 � � � � � � �RCON� � � � � �INTCON

Generate a
high-priority interrupt

Generate a
low-priority interrupt

GIEH GIEL

IPEN � 1 : Enable priority levels

Set

� � � � � � �IPR1
CCP1IP

T1CON
1 0 0 0 0 1

TRISC

(Input)
� � � 1 �� � �

0
0
1
1

0
1
0
1

P � 1
P � 2
P � 4
P � 8

Timer1
prescaler
divider

CCP1CON
0 0 0 10 0

0
0
1
1

0
1
0
1

Capture every falling edge
Capture every rising edge
Capture every 4th rising edge
Capture every 16th rising edge

TMR1H

CCPR1H

Prescaler
�P

P � 1, 2, 4, or 8

RC2/CCP1
pin

FOSC/4
(internal clock)

TMR1L

Edge counter and
edge selectionCCPR1L

Transfer

� � � � � � �

Figure 13-10 CCP1/Timer1 capture mode.

To achieve this same functionality for external time-interval measurements, both the start edge and the
stop edge must generate an interrupt. Consider the measurement of a positive pulse (i.e., rising edge to falling
edge). Within the CCP1 interrupt handler, if bit 0 of CCP1CON is set, then a rising-edge interrupt has oc-
curred and the 2-byte CCPR1 value can be copied into TIME. If it is cleared, then TIME can be replaced
by CCPR1 � TIME. The MAX macro of Figure 13-3 can then be invoked to ratchet up the maximum time
interval whenever the latest measurement exceeds the previous maximum. Finally, the CCP1 interrupt han-
dler can toggle bit 0 of CCP1CON in preparation for the next edge, clear the CCP1IF flag, and return.

Within the mainline loop, the display of the maximum value can be updated every second by count-
ing loop times. Every 100th time around the mainline loop, MAXH:MAXL can be read by the
DisplayMax subroutine of Figure 13-6 and displayed.

Example 13-5 Does the reading of MAXH:MAXL in this case constitute a critical region
that should be protected by disabling interrupts, reading MAXH:MAXL, and then reenabling
interrupts?

Solution

The reading does constitute a critical region. Between the reading of MAXL and the reading
of MAXH in the DisplayMax subroutine, a CCP1 interrupt might change the value read. The
result would be MAXH(new):MAXL(old). If the old value was 00:fe and the new value is

13_PH_Peatman_861202 6/28/02 9:47 AM Page 179

180 Time-Interval Measurements Chapter 13

01:02, then the value read would be 01:fe. It would be read and displayed, probably invalidat-
ing the on-going measurement.

Example 13-6 What determines the minimum pulse width of the pulse to be measured in this way?

Solution

In response to the leading edge of the pulse, the CPU must get to the CCP1 interrupt handler.
If CCP1 is the only high-priority interrupt, then in the worst case, it is put off by the longest
critical region in the mainline code. Within the handler, if bit 1 of CCP1CON equals 1, then
this is the rising (i.e., leading) edge of the pulse. CCPR1H:CCPR1L must be copied to
TIMEH:TIMEL, the bit 1 of CCP1CON toggled, and the CCP1IF flag bit cleared. At this
point, even as the

retfie FAST

instruction is being executed, the falling edge of the pulse can occur and its time will be suc-
cessfully captured.

Since the time to respond to the trailing edge of the pulse takes somewhat longer, the min-
imum interval between pulses must be somewhat longer than the minimum pulse width asked
for in this example.

13.6 CCP1 AND INTERNAL MEASUREMENTS

Internal time-interval measurements have already been examined in great detail. However, the use of the
CCP1/Timer1 combination offers an interesting alternative. In support of this alternative, the RC2/CCP1
pin is initialized as an output, but with nothing connected to it. Then the START and STOP macros are
redefined as

START macro
bsf PORTC,RC2
endm

STOP macro
bcf PORTC,RC2
endm

The execution of the START macro will cause the output pin to go high and will trigger a CCP1 cap-
ture. The execution of the STOP macro will complete the measurement.

13.7 EXTENDED EXTERNAL MEASUREMENTS

By extending Timer1 to a 3-byte counter, as discussed in conjunction with Figure 13-7, external time-
interval measurements can be extended to 3-byte values. Each Timer1 overflow can be handled with a
low-priority interrupt. Each CCP1 interrupt might be handled with a high-priority interrupt if the min-
imum pulse width to be measured is less than 10 microseconds or so. For longer pulse-width measure-
ments, CCP1 can be fielded with a low-priority interrupt, if the high-priority interrupt mechanism is to
be reserved for some other application requiring its zero-latency feature.

13_PH_Peatman_861202 6/28/02 9:47 AM Page 180

Section 13.8 Timer3 and CCP2 Use 181

Reading the Timer1 RAM extension variable, TMR1X, within the CCP1 handler requires the same
care and technique used in Section 13.4. A valid 3-byte time stamp is thereby produced by each capture.

13.8 TIMER3 AND CCP2 USE

Timer3 has essentially the same capabilities as Timer1, as shown in Figure 13-11. Likewise, CCP2 has
essentially the same capabilities as CCP1, as shown in Figure 13-12. As pointed out in Figure 13-11,
T3CON contains two control bits that afford any one of three options:

� CCP1 and CCP2 can both be associated with Timer1.
� CCP1 and CCP2 can both be associated with Timer3.
� CCP1 can be associated with Timer1 while CCP2 is associated with Timer3.

Having two completely independent units can be useful for high-resolution measurements (with the
timer’s prescaler � 1) and for extended-range measurements (with the other timer’s prescaler � 8). An-
other rationale for having two completely independent units arises when the CCP2/Timer3 is used in a
“trigger special event” mode. It can trigger the analog-to-digital converter to start successive conversions
automatically, with an arbitrary sample period, as will be discussed at the end of Section 16.3. Mean-
while, the CCP1/Timer1 combination can be used for captures or compares.

T3CON
1 0 1 0 0 1

� � � � � �

0
0
1
1

0
1
0
1

P � 1
P � 2
P � 4
P � 8

TMR3ON � 1 : Enable clock input
CCP1 with Timer1; CCP2 with Timer1
CCP1 with Timer1; CCP2 with Timer3
CCP1 with Timer3; CCP2 with Timer3

0
1
�

0
0
1

Timer1 prescaler divider

TMR3X Overflow

TMR3H

RAM

Buffer register

8-bit counter8-bit counter

Prescaler
�P

P � 1, 2, 4, or 8
TMR3ON

FOSC/4
(internal clock)

TMR3L

PIR2

� � � � � �

�

�PIE2

TMR3IF

TMR3IE

1 � � � � � � �RCON� � � � � �INTCON

Generate a
high-priority interrupt

Generate a
low-priority interrupt

GIEH GIEL

IPEN � 1 : Enable priority levels

Write to TMR3L
Read from TMR3L

Set

� � � � � � �IPR2
TMR3IP

Figure 13-11 Timer3 operation.

13_PH_Peatman_861202 6/12/02 3:39 PM Page 181

182 Time-Interval Measurements Chapter 13

PIR2

� � � � � � �PIE2

CCP2IF

CCP2IE

1 � � � � � � �

� � � � � � �

RCON� � � � � �INTCON

Generate a
high-priority interrupt

Generate a
low-priority interrupt

GIEH GIEL

IPEN � 1 : Enable priority levels

Set

� � � � � � �IPR2
CPP2IP

T3CON
1 0 1 0 0 1

TRISC

If CCP2 is assigned
to RC1

� � � � 1� � �

TRISB

If CCP2 is assigned
to RB3

� � 1 � �� � �

0
0
1
1

0
1
0
1

P � 1
P � 2
P � 4
P � 8

Timer3
prescaler
divider

CCP2CON
0 0 0 10 0

0
0
1
1

0
1
0
1

Capture every falling edge
Capture every rising edge
Capture every 4th rising edge
Capture every 16th rising edge

TMR3H

CCPR2H

Prescaler
�P

P � 1, 2, 4, or 8

CCP2 pin

FOSC /4
(internal clock)

TMR3L

Transfer

Edge counter and
edge selectionCCPR2L

Figure 13-12 CCP2/Timer3 capture mode.

13.9 FREQUENCY MEASUREMENT

The QwikFlash instrument described in Chapter 4 will measure the frequency of the input to the
RC1/CCP2 pin with the 50 parts-per-million accuracy afforded by the internal clock. A timing diagram
of the measurement process is illustrated in Figure 13-13. Using the 3-byte TMR3 (i.e.,
TMR3X:TMR3H:TMR3L) as a time base, the measurement begins when CCP2 is triggered by a ris-
ing edge of the input waveform to capture the start time (i.e., the value of TMR3 at that time). Each suc-
cessive rising edge of the input waveform must be counted. For high frequencies, this counting can be
expedited by capturing every 16th rising edge with CCP2CON � B'00000111', as specified in Figure
13-12. Within the interrupt service routine for CCP2, the CCP2IF flag is cleared, and a 3-byte
MX:MH:ML variable can be incremented by 16. TMR3 must be checked to determine whether the gate
time has been exceeded, signaling the end of the measurement. If so, the CCP2IE interrupt enable bit
is cleared to turn off further interrupts. The captured start time is subtracted from the captured stop time
to form NX:NH:NL, the number of internal clock periods between MX:MH:ML cycles of the input
waveform. The frequency is then calculated as

The multiplication and division subroutines for carrying out this calculation will be discussed in the
next chapter.

Frequency �
M

N
� 2,500,000 Hz

13_PH_Peatman_861202 6/26/02 3:17 PM Page 182

Section 13.10 Temperature Measurement 183

Reference clock
(2.5 MHz)

N�

M�1

1 2 3 4

Gate time

N�1
N

M
Input waveform

. .

.

For a gate time of � 0.4 seconds and a 2.5 MHz reference clock, n � 1,000,000.
Start measurement on a rising edge of the input waveform.
Stop measurement on the first rising edge of the input waveform after the nominal gate time has been
exceeded.
M equals the integral number of clock periods of the input waveform occurring between Start and Stop.
N equals the number of reference clock periods occurring between Start and Stop.
Period � (N/M) � 0.4 microseconds
Frequency � (M/N) � 2500000 Hz
Resolution � �1 part in � 1,000,000

Figure 13-13 Timing diagram for frequency measurement.

Determining when the gate time has been exceeded would seem to require that, within the CCP2
interrupt handler, the newly captured value of TMR3 minus the start time be checked to see if it has ex-
ceeded the nominal gate time value of 1,000,000. If so, then the measurement has been completed. A
simpler procedure entails noting that 1,000,000 � 0x0f4240. If TMR3X is initialized to 0x2f, then bit
6 of TMR3X will be set after as few as 0x400000 � 0x2fffff � D'1048577' clock cycles. Because the
role of the gate time is to determine the resolution of the measurement, this will yield (slightly) better
than one part-per-million resolution.

Within the mainline program, the CCP2IE interrupt enable bit can be monitored each time around
the mainline loop. When the CCP2 interrupt handler clears it, signaling the end of the measurement, the
mainline code takes the start time, the stop time, and MX:MH:ML and calculates and displays the fre-
quency. A new measurement can be initiated by clearing the CCP2IF flag bit. Bit 7 of TMR3X can be
set as a signal to the CCP2 interrupt handler that a new measurement has begun, so that it will, in turn,
reinitialize TMR3X to the 0x2f value (discussed in the previous paragraph) and collect the start time.
Finally, the CCP2IE bit is set, enabling CCP2 interrupts. The next rising edge of the input waveform
will initiate a new measurement.

13.10 TEMPERATURE MEASUREMENT

In Section 10.3, the use of the voltage-output temperature transducer on the QwikFlash board was dis-
cussed in conjunction with the on-chip analog-to-digital converter. That transducer has a sensitivity of
10 millivolts per degree Fahrenheit while the ADC has a resolution of 5000 millivolts/1024. This trans-
lates into a measurement resolution of about half a degree Fahrenheit per increment. In Sections 15.8
and 17.9, two direct digital output temperature transducers will be considered, each using a serial out-
put mechanism to transfer the temperature measurement back to the PIC18F452 microcontroller in
Centigrade form.

An interesting alternative is presented by Analog Devices’ TMP04 temperature transducer, avail-
able in the same TO-92 package as the LM34DZ part used on the QwikFlash board. Alternatively, it is

13_PH_Peatman_861202 6/26/02 3:17 PM Page 183

184 Time-Interval Measurements Chapter 13

PIC18F452

RC1/CCP2

Output

Removable
jumper

Analog Devices
TMP04FT9
(Top view)

VDD

2

1 3

T1 T2

For Centigrade measurement with 1 C resolution:

For Centigrade measurement with 0.1 C resolution:

For Fahrenheit measurement with 1 F resolution:

For Fahrenheit measurement with 0.1 F resolution:

Temperature � 235 �
 400 T1

T2

Temperature � 455 � 720 T1
T2

Temperature � 4550 �7200 T1
T2

Temperature � 2350 � 4000 T1
T2

Figure 13-14 Temperature measurement via time-interval measurements.

available in SO-8 and TSSOP-8 surface-mount packages. With a typical accuracy of �1.5°C up to
100°C, it would seem to offer no advantage over the other choices. However, its output comes in the form
of a pulse-width-modulated output having a nominal frequency of 35 Hz at room temperature. As shown
in Figure 13-14, the output swings between 0 V and VDD. The edges can be used to trigger CCP1 or CCP2
capture interrupts for time-interval measurements. Each period of the output consists of a “high” seg-
ment, denoted as T1, and a “low” segment, denoted as T2. T1 is nominally 10 milliseconds and is rel-
atively insensitive to temperature change. (Analog Devices notes that T1 will not exceed 12 milliseconds
over the rated temperature range of �25°C to �100°C.) With the equations of Figure 13-14, the nom-
inal value of T2 at room temperature is about 19 milliseconds. These values for T1 and T2 mean that
the measurements will be made with excellent resolution, better than 1 part in 10,000. Using the fixed-
point multiplication and division subroutines of Sections 14.2 and 14.3 in the next chapter, the temper-
ature is easily computed in either Centigrade or Fahrenheit and with a resolution that fits the application.
Figure 13-14 lists the equations to compute the temperature so that each integer increment of the result
represents 1 degree of temperature. The alternative equations produce a number wherein each integer
increment of the result represents 0.1 degree of temperature. While these high-resolution results are un-
warranted in terms of absolute temperature accuracy, they are quite accurate, and appropriate, for
incremental temperature measurements.

PROBLEMS
13-1 Reading Timer1 What would be the consequence if all reads of the 2 bytes of Timer1
proceeded with a read of TMR1H followed immediately by a read of TMR1L?

13-2 CyclesToMicrosec subroutine

13_PH_Peatman_861202 6/26/02 3:17 PM Page 184

Problems 185

(a) Being sure to round off to the nearest integer, rewrite the subroutine of Figure 13-4 to im-
plement the algorithm as

Microseconds � (Cycles � 4)/10

(b) Which subroutine uses fewer instructions?
(c) What is the largest value of cycles that can be handled by each subroutine?

13-3 DecimalDisplay subroutine Rewrite the subroutine of Figure 13-5 as a new DD1 sub-
routine that displays AARGB0:AARGB1:AARGB2 as a decimal number on line 1 of the
LCD. This new subroutine and the original, perhaps renamed DD2, can be used together to dis-
play two variables.

13-4 DisplayMax3 subroutine The DisplayMax subroutine of Figure 13-6 displays the 2-byte
variable MAXH:MAXL in microseconds on the second line of the LCD. Write an expanded
version, DisplayMax3, that will do the same for MAXX:MAXH:MAXL.

13-5 Incrementing TMR1X

(a) Using the low-priority interrupt’s polling routine structure of Figure 9-4, show the modifi-
cation to the polling sequence and create a TMR1handler subroutine to increment TMR1X.

(b) What is the effect of any latency introduced by using this low-priority interrupt to incre-
ment TMR1X?

(c) Are the STARTX and STOPX macros of Figure 13-9 still able to read TMR1X:TMR1H:
TMR1L without error, even in the worst case? Explain.

13-6 CCP1handler subroutine Write a low-priority interrupt handler to form MAXH:MAXL,
the maximum time interval between repeated rising and falling edges on the CCP1 input pin,
as discussed in Section 13.5.

13-7 CCP1 high-priority interrupt service routine

(a) Recast the solution of Problem 13-6 as the sole source of high-priority interrupts.
(b) What is the minimum positive pulse width that can be measured? Explain.
(c) What is the minimum time between the trailing edge of one pulse and the leading edge of

the next? Explain.

13-8 Internal time-interval measurements

(a) Compare measuring an internal time interval with the START and STOP macros of Figure
13-2 with your answer to part (b) of the last problem. Explain the difference.

(b) Section 13.6 offers an alternative scheme for measuring an internal time interval. What is
the minimum time interval that can be measured in this way? Assume there are no other
interrupt sources.

13-9 Extended external time-interval measurement

(a) With an internal 2.5 MHz clock and no prescaling, what is the maximum time interval that
can be measured?

(b) With an internal 10 MHz clock and no prescaling, what is the maximum time interval that
can be measured? What is the resolution of the measurement in this case?

13_PH_Peatman_861202 6/12/02 3:39 PM Page 185

