
116

Chapter

9

INTERRUPTS AND
INTERRUPT TIMING

9.1 OVERVIEW

Many microcontroller tasks can be monitored, and paced, by mainline loop timing. Inputs can be sensed
for changes every 10 milliseconds. Output changes can be made to occur in response to input changes
or in multiples of the 10 millisecond loop time. There are other tasks, however, that require faster han-
dling. For example, transfers taking place at 19,200 baud from the serial port of a computer will pre-
sent the microcontroller with a new byte of data to be handled every half-millisecond.

To handle this and other tasks requiring a fast response, the PIC18F452 microcontroller contains a
wealth of resources. For example, as bits arrive from the serial port of a computer every 50 microseconds
or so, the microcontroller’s UART (Universal Asynchronous Receiver Transmitter) proceeds to build the
received bits into successive bytes of data. Only as each byte is thus formed does the UART seek the sup-
port of the CPU to deal with the received byte. It does so by sending an interrupt signal to the CPU, ask-
ing the CPU to suspend what it is doing, deal with the received byte, and then resume the suspended task.

This UART example illustrates two facets of support that the microcontroller gives to fast events. First,
built-in modules, operating independently of the CPU, are able to handle a burst of activity before turning
to the CPU for help. In addition to the UART, the SPI (Serial Peripheral Interface) does the same buffer-
ing of a byte of data for a shift register interface. The I2C (Inter-Integrated Circuit) interface uses a special
protocol to transfer bytes to or from one of several I2C devices using just two pins of the microcontroller.

Second, a built-in module such as the UART, or one of the timer resources, or even a change on an
external interrupt pin can send an interrupt signal to the CPU asking for help. With 17 different inter-
rupt sources, the PIC18F452 provides the designer with a broad range of resources for managing fast
events. To give just one example of this breadth, an application requiring a second UART receiver can
build one with an external interrupt pin (e.g., RB1/INT1) to signal the start of each new byte and an in-

09_PH_Peatman_861202 6/12/02 3:36 PM Page 116

Section 9.2 Interrupt Timing for Low-Priority Interrupts 117

IS #1

Mainline

T1 T1

TP1

Mainline Mainline

Figure 9-1 Interrupt timing parameters.

ternal timer mechanism (e.g., CCP1) to provide an interrupt when each new bit of the received byte is
to be read.

This chapter will begin with an examination of the timing issues involved with multiple interrupt
sources. Next it will explore how to use a single interrupt source and then multiple interrupt sources. The
PIC18F452’s two interrupt priority levels will be examined. Working together, they can reduce the
latency for a high-priority interrupt. The final sections deal with critical regions of the mainline code
and with the use of external interrupt pins.

9.2 INTERRUPT TIMING FOR LOW-PRIORITY INTERRUPTS

An interrupt source can be characterized by two parameters:

� TPi, the time interval between interrupts from interrupt source #i. If this varies from interrupt
to interrupt, then TPi represents the shortest (i.e., the worst-case) interval.

� Ti, the time during which the CPU digresses from the execution of the mainline program to han-
dle this one interrupt source. If this varies, then Ti represents the longest (i.e., the worst-case) value.

For an application with a single interrupt source, the needs of that source will be met if

T1 � TP1

as illustrated in Figure 9-1. This means that the CPU will complete the execution of the interrupt source’s
handler before it is asked to execute the handler again. The needs of the mainline program will be met
if the slices of time left for its execution, TP1 � T1, are sufficient to execute the mainline subroutines
during each 10 millisecond loop time. One of the strengths of the PIC18F452’s derivation of its 2.5 MHz
internal clock rate from a 10 MHz crystal (as on the QwikFlash board) is that both the interrupt source’s
timing needs and those of the mainline program can be ameliorated by a factor of 4 simply by changing
the programming of a configuration byte so that the chip will run at an internal clock rate of 10 MHz.

In the following discussion, all interrupt sources will be assumed to be fielded with the low-prior-
ity interrupt service routine. This is the normal scheme, leaving the PIC18F452’s high-priority interrupt
service routine available to ameliorate interrupt timing constraints without changing the chip’s internal
clock rate. Section 9.4 will explore the help provided by high-priority interrupts.

The worst-case timing diagrams for two interrupt sources are illustrated in Figure 9-2. The first is
the worst-case timing diagram for interrupt source #1 (IS#1). Just before it requests service, IS#2 requests
and gets service. Because the CPU’s servicing of IS#2 automatically disables, temporarily, all other in-
terrupts, IS#1 is put off until the handler for IS#2 has run to completion. This time is labeled T2, the du-
ration of the handler. Thus the worst-case latency for IS#1 is this same value, T2. It can be seen that even
in this worst case for IS#1, it is serviced well before it requests service again. In general, the condition
IS#1 must meet is

09_PH_Peatman_861202 6/12/02 3:36 PM Page 117

118 Interrupts and Interrupt Timing Chapter 9

(a) Worst-case timing diagram for interrupt source #1

(b) Worst-case timing diagram for interrupt source #2

T2 � T1 � TP1

IS #1

TP1

T2

T1

• • •

T1

IS #2

Latency

Mainline

T1 � T2 � TP2

IS #1

TP2

Latency T2 • • •IS #2

T1

T2

Mainline • • •

Figure 9-2 Worst-case timing diagrams for two interrupt sources.

T2 � T1 � TP1

Figure 9-2b illustrates the worst-case timing diagram for IS#2. In this case, IS#2 requests service
just after IS#1 has requested, and received, service. Again, so long as IS#2 receives service before it re-
quests service again, it satisfies its timing requirements. In this case of two interrupt sources, the re-
quirement can be expressed

T1 � T2 � TP2

For three or more interrupt sources, the test that each interrupt source must satisfy depends on the
assignment of its handler in the interrupt service routine’s polling routine listed in Figure 6-2 and repeated
in Figure 9-3. Reassigning the order in which interrupt sources are polled can sometimes rectify an as-
signment that produces a worst-case timing problem. Two factors account for the worst-case timing
constraint for each interrupt source:

1. In the worst case, an interrupt source will ask for service just after the longest handler further
down the polling routine has begun.

2. In addition, all handlers above it will also be serviced first.

The first condition occurs because once the execution of any handler has begun, further interrupts are
automatically disabled. Therefore, the execution of the handler (regardless of where it ranks in the
polling routine) will play out to completion. The second condition is a result of the

CONTINUE_

construct being executed after each handler. This construct causes execution to revert to the beginning
of the polling routine where, in the worst case, all interrupt sources above the source in question will be
waiting for service.

09_PH_Peatman_861202 6/12/02 3:36 PM Page 118

Section 9.2 Interrupt Timing for Low-Priority Interrupts 119

LOOP_

IF_ ‹test whether interrupt #1 is ready for service›
rcall Int1handler
CONTINUE_

ENDIF_

IF_ ‹test whether interrupt #2 is ready for service›
rcall Int2handler
CONTINUE_

ENDIF_

IF_ ‹test whether interrupt #3 is ready for service›
rcall Int3handler
CONTINUE_

ENDIF_
.
.
.
IF_ ‹test whether interrupt #N is ready for service›
rcall IntNhandler
CONTINUE_

ENDIF_

BREAK_

ENDLOOP_

Figure 9-3 Interrupt service routine’s polling routine.

These considerations lead to the following interrupt timing constraints for four interrupt sources:

(maximum of T2,T3,T4) � T1 � TP1
(maximum of T3,T4) � T1 � T2 � TP2

T4 � T1 � T2 � T3 � TP3
(9-1)

T1 � T2 � T3 � T4 � TP4

The low-priority interrupt service routine is shown in its entirety in Figure 9-4. When an interrupt
occurs (with interrupts enabled to the CPU), the following sequence of events takes place automatically:

� The CPU completes the execution of its present mainline instruction.
� The low-priority global interrupt enable bit (GIEL) is cleared, thereby disabling further low-

priority interrupts.
� The contents of the program counter (containing the address of the next mainline program in-

struction to be executed upon return from the interrupt service routine) is stacked.
� The program counter is loaded with 0x0018, the low-priority interrupt vector.

In order not to cause erroneous operation of the mainline code it is interrupting, the interrupt service rou-
tine must be sure to return CPU registers the way they were found. Because it is difficult to do anything
without changing the contents of WREG and the STATUS register, these are set aside at the beginning
of the interrupt service routine and restored at the end. Note the order of restoration: first WREG and
then STATUS. This order matters because the

movf WREG_TEMP,W

instruction affects the Z and the N bits of the STATUS register. By restoring STATUS last, the main-
line code will get these bits back exactly as they were left by the last instructions executed in the main-
line code before the interrupt occurred.

The assumptions listed in Figure 9-4c are suggested simply to reduce the number of other CPU reg-
isters that must be set aside and restored. As suggested in Section 2-3, the BSR register can be set to 0x01

09_PH_Peatman_861202 6/26/02 3:13 PM Page 119

120 Interrupts and Interrupt Timing Chapter 9

;;;;;;; Vectors ;;;
org ØxØØØØ ;Reset vector
nop
goto Mainline

org ØxØØØ8 ;High-priority interrupt vector address
goto $;Trap

org ØxØØ18 ;Low-priority interrupt vector address
goto LoPriISR

(a) Vectors.

LoPriISR ;Low-priority interrupt service routine
movff STATUS,STATUS_TEMP ;Set aside STATUS and WREG
movwf WREG_TEMP

LOOP_
IF_ ‹test whether interrupt #1 is ready for service›
rcall Int1handler
CONTINUE_

ENDIF_

IF_ ‹test whether interrupt #2 is ready for service›
rcall Int2handler
CONTINUE_

ENDIF_

IF_ ‹test whether interrupt #3 is ready for service›
rcall Int3handler
CONTINUE_

ENDIF_
.
.
IF_ ‹test whether interrupt #N is ready for service›
rcall IntNhandler
CONTINUE_

ENDIF_

BREAK_
ENDLOOP_

movf WREG_TEMP,W ;Restore WREG and STATUS
movff STATUS_TEMP,STATUS
retfie ;Return from interrupt, reenabling GIEL

(b) Low-priority interrupt service routine.

BSR is never changed throughout the application.
FSR0 and FSR1 are used only in the mainline code.
FSR2 is used only in interrupt handlers.
PCL is never used as an operand in an interrupt handler.

(c) Assumptions.

Figure 9-4 Low-priority interrupt mechanism.

in the Initial subroutine and thereafter never changed. This will make 128 � 256 � 384 bytes of RAM
reachable by direct addressing, an adequate number for most application programs. The remaining RAM
is still reachable, but by means of indirect addressing with FSR0, FSR1, or FSR2.

It is quite common to use indirect addressing within an interrupt handler. For example, successive
characters received by the UART might be written into a line buffer with the

movwf POSTINC2

09_PH_Peatman_861202 6/12/02 3:36 PM Page 120

Section 9.3 Low-Priority Interrupt Structure 121

instruction. If the interrupt handlers all avoid using FSR0 and FSR1, and if the mainline code avoids
using FSR2, then none of these 2 byte registers need be set aside and restored.

The last assumption of Figure 9-4c of never using PCL as an operand in an interrupt handler is list-
ed as a reminder that such an operation may change the content of PCLATH. If it is desired to build a jump
table (see Problem 2-9) into an interrupt handler, it is only necessary to set aside and restore PCLATH.

The interrupt timing constraints for four interrupt sources listed earlier as (9-1) correctly identify
items that must be considered in each case. However, in the interest of keeping the explanation simple,
some small items were left out. For example, the polling routine of Figure 9-3 adds a few cycles as each
test is carried out and the associated branch instruction executed. Likewise, the automatic vectoring
from mainline code to interrupt service routine inserts a couple of cycles, as does the setting aside and
restoring of WREG and STATUS. Nevertheless, the timing constraints of (9-1) keep the focus on the
dominant factors that a designer can do something about if the timing is close.

9.3 LOW-PRIORITY INTERRUPT STRUCTURE

Using the high-priority/low-priority interrupt scheme built into the PIC18F452 begins with the setting
of the IPEN bit shown in Figure 9-5a with

bsf RCON,IPEN ;Enable priority levels

The alternative, IPEN � 0, causes the chip to revert to the single interrupt level scheme of earlier-gen-
eration PIC microcontrollers, discarding a valuable feature of this chip.

(a) Initialization for two levels of interrupt priority

1RCON � � � � � � �

IPEN 1: Enable high/low interrupt priority levels
0: PIC16CXXX compatibility mode

(b) Global interrupt enable bits

(c) Structure for low-priority interrupt sources.

1INTCON 1

GIEL 1: Enable low-priority interrupts
0: Disable low-priority interrupts

GIEH 1: Enable all interrupts
0: Disable all interrupts

Gates for other low-priority interrupt sources

Interrupt flag bitTimer0 overflow
interrupt gate

GIEH
GIEL
TMR0IF
TMR0IE
TMR0IP

Interrupt CPU
via 0x0018
low-priority
interrupt vector

Interrupt enable bit
Interrupt priority bit
(must be zero)

Figure 9-5 Low-priority interrupt structure.

09_PH_Peatman_861202 6/12/02 3:36 PM Page 121

122 Interrupts and Interrupt Timing Chapter 9

The GIEH (Global Interrupt Enable for High-priority interrupts) bit gates all interrupts to the CPU,
both high priority and low priority. It is usually set by the last instruction before the return from the Initial
subroutine, after each interrupt source being used in an application has been initialized.

The GIEL (Global Interrupt Enable for Low-priority interrupts) bit gates all low-priority inter-
rupts to the CPU. It, too, is set by one of the last instructions in the Initial subroutine. It is automati-
cally cleared when a low-priority interrupt occurs, blocking further automatic vectoring if a second
low-priority interrupt occurs while a first one is being serviced. The GIEL bit is automatically set again
by the execution of the

retfie ;Return from interrupt

instruction at the close of the interrupt service routine.
The GIEL bit can also be used within the mainline code to disable low-priority interrupts while a

critical region of code extending over a handful of instructions is executed, followed by the reenabling
of interrupts by setting the GIEL bit again. One occasion that called for such treatment arose in con-
junction with the LoopTime subroutine of Section 5-4.

Each interrupt source has associated with it an interrupt priority bit that assigns the interrupt source
to either the high-priority interrupt structure (discussed in Section 9.4) or the low-priority interrupt
structure discussed here. The default state of these interrupt-priority bits at power-on reset assigns every
interrupt source to the high-priority interrupt structure. Accordingly, the “IP” bit for each interrupt
source to be assigned to the low-priority interrupt structure must be cleared in the Initial subroutine.
For example,

bcf INTCON2,TMRØIP

will assign Timer0 overflow interrupts to the low-priority interrupt structure.
Because the default state of the “IP” bit must be changed under the normal circumstance of as-

signing an interrupt source to the low-priority interrupt structure, it becomes necessary to know where
each of these bits is located. Figure 9-6 lists them all, along with each interrupt source’s local enable bit
and its flag bit.

Example 9-1 The LoopTime subroutine discussed in Section 5.4 was able to use the setting
of the TMR0IF flag to obtain precise timing for a 10 millisecond loop time with an internal
clock rate of 2.5 MHz and the use of Timer0 as a scale-of-25,000 counter. Some precision was
lost in trying to achieve a 10 millisecond loop time with an internal clock rate of 10 MHz and
the use of Timer0 as a scale-of-100,000 counter. The counter required use of Timer0’s prescaler,
and the write to the timer reset the prescaler. For most applications, the resulting error is minis-
cule. With the help of Timer0 overflow interrupts, the error can be eliminated. Develop the in-
terrupt routine and the modified LoopTime subroutine.

Solution

A TMR0handler interrupt handler can be made to set the TMR0IF flag precisely every 50,000
cycles, or 5 microseconds. Each time it does so, it decrements a TMR0CNT variable. The
LoopTime subroutine now waits for TMR0CNT to be equal to zero as its signal that 10 mil-
liseconds have elapsed. It then simply reinitializes TMR0CNT to 2. The resulting subroutine
is listed in Figure 9-7a. The initialization for Timer0 interrupts is shown in Figure 9-7b. The
TMR0handler is listed in Figure 9-7c. The LoPriISR interrupt service routine is shown in
Figure 9-7d, assuming there are no other interrupt flags to poll.

09_PH_Peatman_861202 6/12/02 3:36 PM Page 122

Section 9.3 Low-Priority Interrupt Structure 123

Name Priority Bit Local Enable Bit Local Flag Bit

INT0 external interrupt * INTCON,INT0IE INTCON,INT0IF

INT1 external interrupt INTCON3,INT1IP INTCON3,INT1IE INTCON3,INT1IF

INT2 external interrupt INTCON3,INT2IP INTCON3,INT2IE INTCON3,INT2IF

RB port change interrupt INTCON2,RBIP INTCON,RBIE INTCON,RBIF

TMR0 overflow interrupt INTCON2,TMR0IP INTCON,TMR0IE INTCON,TMR0IF

TMR1 overflow interrupt IPR1,TMR1IP PIE1,TMR1IE PIR1,TMR1IF

TMR3 overflow interrupt IPR2,TMR3IP PIE2,TMR3IE PIR2,TMR3IF

TMR2 to match PR2 int. IPR1,TMR2IP PIE1,TMR2IE PIR1,TMR2IF

CCP1 interrupt IPR1,CCP1IP PIE1,CCP1IE PIR1,CCP1IF

CCP2 interrupt IPR2,CCP2IP PIE2,CCP2IE PIR2,CCP2IF

A/D converter interrupt IPR1,ADIP PIE1,ADIE PIR1,ADIF

USART receive interrupt IPR1,RCIP PIE1,RCIE PIR1,RCIF

USART transmit interrupt IPR1,TXIP PIE1,TXIE PIR1,TXIF

Sync. serial port int. IPR1,SSPIP PIE1,SSPIE PIR1,SSPIF

Parallel slave port int. IPR1,PSPIP PIE1,PSPIE PIR1,PSPIF

Low-voltage detect int. IPR2,LVDIP PIE2,LVDIE PIR2,LVDIF

Bus-collision interrupt IPR2,BCLIP PIE2,BCLIE PIR2,BCLIF

Figure 9-6 Register and bit names for every interrupt source.

* INT0 can only be used as a high-priority interrupt

Example 9-2 Determine the “T1” and “TP1” values for the Timer0 interrupts of the last ex-
ample. Also determine the percentage of the CPU’s time spent handling these interrupts.

Solution

The interval between interrupts, TP1, is 50,000 cycles or 5,000 microseconds, given the 10
MHz internal clock rate of the chip. When a Timer0 overflow interrupt occurs, the CPU takes
two cycles after executing the last mainline instruction before it executes the interrupt vector
instruction

goto LoPriISR

Consequently,

T1 � 2 � 12 � 18 � 32 cycles

The percentage of the CPU’s time spent handling Timer0 interrupts is

(32/50000) � 100 � 0.064%

Example 9-3 If another low-priority interrupt were added to the Timer0 interrupts of the last
problem, and if the Timer0 interrupts were placed second in the polling routine, what would
be the new interrupt source’s worst-case latency because of the Timer0 interrupts?

09_PH_Peatman_861202 6/26/02 3:13 PM Page 123

124 Interrupts and Interrupt Timing Chapter 9

LoopTime
REPEAT_ ;Wait until interrupt decrements TMRØCNT to zero
movf TMRØCNT,F

UNTIL_ .Z.
MOVLF 2,TMRØCNT
return

(a) LoopTime subroutine.

bsf RCON,IPEN ;Enable two interrupt priority levels
bcf INTCON2,TMRØIP ;Assign TMRØ low interrupt priority
bcf INTCON,TMRØIF ;Clear TMRØ overflow flag
bsf INTCON,TMRØIE ;Enable TMRØ overflow interrupt source
MOVLF 2,TMRØCNT ;Initialize counter
bsf INTCON,GIEL ;Enable low-priority interrupts to CPU
bsf INTCON,GIEH ;Enable all interrupts to CPU

(b) Instructions to be added to the Initial subroutine.

Bignum equ 65536-5ØØØØ+12+2
TMRØhandler

decf TMRØCNT,F ;Decrement counter (1)
bcf INTCON,GIEH ;Disable interrupts (1)
movff TMRØL,TMRØLCOPY ;Read 16-bit counter at this moment (2)
movff TMRØH,TMRØHCOPY ; (2)
movlw low Bignum ; (1)
addwf TMRØLCOPY,F ; (1)
movlw high Bignum ; (1)
addwfc TMRØHCOPY,F ; (1)
movff TMRØHCOPY,TMROH ; (2)
movff TMRØLCOPY,TMROL ;Write 16-bit counter at this moment (2)
bsf INTCON,GIEH ;Reenable interrupts (1)
bcf INTCON,TMRØIF ;Clear TimerØ flag (1)
return ; (2)

(c) TMR0handler subroutine (18 cycles).

org ØxØØ18 ;Low-priority interrupt vector address
goto LoPriISR ;Jump (2)
.
.

LoPriISR ;Low-priority interrupt service routine
movff STATUS,STATUS_TEMP ; (2)
movwf WREG_TEMP ; (1)
rcall TMRØhandler ; (2)
movf WREG_TEMP,W ; (1)
movff STATUS_TEMP,STATUS ; (2)
retfie ; (2)

(d) LoPriISR routine (12 cycles).

Figure 9-7 Example 9-1.

Solution

In the worst case, a Timer0 interrupt would have occurred, STATUS and WREG set aside, and
the polling routine would have found the new interrupt source not asking for service. At that
precise moment (in the worst case), the new interrupt source would set its flag, asking for ser-
vice. Meanwhile, in LoPriISR, where interrupts are disabled, the CPU would execute

� The branch associated with the IF_ construct for the new interrupt (2 cycles)
� The test of the TMR0IF flag (2 cycles)

09_PH_Peatman_861202 6/28/02 9:45 AM Page 124

Section 9.4 High-Priority Interrupt Structure 125

� The call of TMR0handler (2 cycles)
� The handler itself (18 cycles)
� The branch for the CONTINUE_ construct following the return to the polling routine (2 cycles)
� The test of the new interrupt’s flag (2 cycles)
� The call of the new interrupt’s handler (2 cycles)

After this worst-case latency of 30 cycles, or 3 microseconds, the CPU would execute the first
instruction of the new interrupt’s handler.

9.4 HIGH-PRIORITY INTERRUPT STRUCTURE

An interrupt source assigned with its “IP,” interrupt priority, bit to the high-priority interrupt structure gains
the benefit of being able to suspend the execution of the mainline code and to disable all low-priority in-
terrupts. Furthermore, it can even suspend the execution of the low-priority interrupt service routine,
LoPriISR. Except for any brief disabling of high-priority interrupts to protect a critical region of code,
a single interrupt source assigned to the high-priority interrupt structure experiences no latency at all! This
benefit quickly dissipates as soon as a second interrupt source is also assigned high priority.

The designers of the PIC18F452 added one further feature to minimize the latency of a high-pri-
ority interrupt. As shown in Figure 9-8a, when a high-priority interrupt occurs, the contents of STATUS,
WREG, and BSR are automatically copied to shadow registers. Once the interrupt source has been ser-
viced, the execution of

retfie FAST

tells the CPU to automatically

(a) Automatic setting aside of STATUS, WREG, and BSR when a high-priority interrupt occurs

(b) Automatic restoration of STATUS, WREG, and BSR in response to the “retfie FAST”
 instruction.

STATUS WREG BSR

Shadow registers

STATUS WREG BSR

Shadow registers

Figure 9-8 Use of high-priority interrupt’s shadow registers.

09_PH_Peatman_861202 6/12/02 3:36 PM Page 125

126 Interrupts and Interrupt Timing Chapter 9

(a) Initialization for two levels of interrupt priority

(b) Global interrupt enable bits

(c) Structure

1RCON

IPEN 1: Enable high/low interrupt priority levels
0: PIC16CXXX compatibility mode

1INTCON 1

GIEL 1: Enable low-priority interrupts
0: Disable low-priority interrupts

GIEH 1: Enable all interrupts
0: Disable all interrupts

Gates for other high-priority interrupt sources

Interrupt CPU
via 0x0008
high-priority
interrupt vector

CCP2
interrupt gate

GIEH
CCP2IF
CCP2IE
CCP2IP

Interrupt flag bit

Gates for other low-priority interrupt sources

Interrupt CPU
via 0x0018
low-priority
interrupt vector

(must be zero)

GIEL
TMR0IF
TMR0IE
TMR0IP

GIEH

Interrupt priority bit
(must be one)

Interrupt enable bit

Figure 9-9 High-priority/low-priority interrupt structure.

1. Restore not only the program counter, but also STATUS, WREG, and BSR
2. Restore the GIEH bit, reenabling both high- and low-priority interrupts, as shown in Figure 9-9

Example 9-4 In Section 13.9, it will be seen that the frequency of a square wave can be mea-
sured with the 50 parts-per-million accuracy of the microcontroller’s crystal oscillator. The
PIC18F452’s “CCP2” input will be used to generate a high-priority interrupt for every 16th ris-
ing edge of the input waveform. These interrupts will be counted over an interval of about 1
second. Knowing the exact number of internal clock cycles (e.g., 2500540) over which an in-
tegral number of periods of the input waveform takes place (e.g., 16 � 123456 � 1975296)
gives the information needed to calculate the input frequency. If the microcontroller’s internal
clock period is 0.4 microseconds, the frequency is given by

The time required to count every 16th input edge will determine the maximum frequency that
can be measured. Show the high-priority interrupt service routine to increment a 3 byte counter,

FCOUNTU:FCOUNTH:FCOUNTL

Frequency �
1975296

2500540 � 0.4
� 1.97487 MHz

09_PH_Peatman_861202 6/12/02 3:36 PM Page 126

Section 9.5 Critical Regions 127

org ØxØØØ8 ;High-priority interrupt vector address
goto HiPriISR ; (2)
.
.
.

HiPriISR ;High-priority interrupt service routine
bcf PIR2,CCP2IF ;Clear interrupt flag (1)
clr WREG ;Clear WREG for subsequent adds with carry (1)
incf FCOUNTL,F ;Add 1 to three-byte value in FCOUNT (1)
addwfc FCOUNTH,F ; (1)
addwfc FCOUNTU,F ; (1)
retfie FAST ;Return and restore from shadow registers (2)

Figure 9-10 Example 9-4.

Solution

The high-priority interrupt service routine is shown in Figure 9-10. With two cycles to get from
the execution of interrupted code to execution of the

goto HiPriISR

two more cycles for this goto instruction, and seven cycles for the HiPriISR, the CPU di-
gresses from the interrupted code for eleven cycles, or

11 � 0.4 � 4.4 microseconds

The maximum frequency that can be measured is

9.5 CRITICAL REGIONS

A critical region of code is a sequence of program instructions that must not be interrupted if erroneous
operation is to be avoided. An example arose in the LoopTime subroutine. Timer0 was read, manipulat-
ed, and rewritten. Correct operation required that exactly 12 cycles occurred between the read and the
rewrite. An intervening interrupt would have thrown off this count, causing an extension of the loop time.

A resource accessed by both the mainline code and an interrupt handler may have the potential for
a malfunction.

Example 9-5 Consider the three-LED array of the QwikFlash board driven from PORTA, as
shown in Figure 4-2a. An interrupt routine is to set RA3 when a rarely occurring condition oc-
curs. If the LED is on, the user knows that the condition has occurred. Meanwhile, suppose that
RA2 and RA1 are used by the mainline code to echo the state of the RPG (PORTD’s RD1 and
RD0) to give a visual indication of RPG changes. Show the code to echo the RPG state on the
LEDs, describe the possible malfunction, and provide a solution.

Solution

One solution to echoing the RPG output to the two LEDs is shown in Figure 9-11a. PORTA
is copied to WREG, the two bits that will hold the RPG bits are cleared to zero, and the result
saved to TEMP. Next PORTD is copied to WREG, shifting bits 1 and 0 of PORTD to bits 2

16

4.4
� 3.6 MHz

09_PH_Peatman_861202 6/12/02 3:36 PM Page 127

128 Interrupts and Interrupt Timing Chapter 9

movf PORTA,W ;Read PORTA and mask off bits 2 and 1
andlw B'11111ØØ1'
movwf TEMP ;and save the result in TEMP
rlncf PORTD,W ;Shift PORTD one place left and into WREG
andlw B'ØØØØØ11Ø' ;Mask off all but bits 2 and 1
iorwf TEMP,W ;OR TEMP into this
movwf PORTA ;and return it to PORTA

(a) Original code with critical region problem.

bcf ‹register›,‹bit› ;Disable the local interrupt enable bit
movf PORTA,W ;Read PORTA and mask off bits 2 and 1
andlw B'11111ØØ1'
movwf TEMP ;and save the result in TEMP
rlncf PORTD,W ;Shift PORTD one place left and into WREG
andlw B'ØØØØØ11Ø' ;Mask off all but bits 2 and 1
iorwf TEMP,W ;OR TEMP into this
movwf PORTA ;and return it to PORTA
bsf ‹register›,‹bit› ;Reenable local interrupt enable bit

(b) Solution by disabling the interrupt source that changes RA3.

movlw B'11111ØØ1' ;Force RA2 and RA1 to zero
andwf PORTA,F
rlncf PORTD,W ;Move RD1 and RDØ to bits 2 and 1 of WREG
andlw B'ØØØØØ11Ø' ;Force all other bits to zero
iorwf PORTA,F ;and OR this back into PORTA

(c) Solution by changing PORTA with read-modify-write instructions.

IF_ PORTD,RD1 == 1 ;Copy RD1 to RA2
bsf PORTA,RA2

ELSE_
bcf PORTA,RA2

ENDIF_
IF_ PORTD,RDØ == 1 ;Copy RDØ to RA1
bsf PORTA,RA1

ELSE_
bcf PORTA,RA1

ENDIF_

(d) Alternative solution changing PORTA with read-modify-write instructions.Figure 9-11 Example 9-5.

and 1 of WREG. The remaining bits of WREG are forced to zero, the result is ORed with the
manipulated copy of PORTA located in TEMP, and the result returned to PORTA.

Note that if the interrupt occurs and sets bit 3 of PORTA anytime after the read of PORTA
and before the write back to PORTA, then bit 3 of PORTA will be cleared back to its original
state by the write back to PORTA.

The chance of the interrupt occurring at the precise moment this mainline sequence is
being executed is remote. Consequently, the resulting code bug is difficult to find. Better so-
lutions exist that absolutely avoid the problem. Figure 9-11b treats the mainline code as a crit-
ical region and postpones for just a few microseconds the execution of the specific interrupt
handler that deals with the rarely occurring condition. An even better solution is to access
PORTA with nothing but the microcontroller’s read-modify-write instructions. The problem
in Figure 9-11a arose because an interrupt could intervene between the initial read of PORTA
and the final write to PORTA. In the code of Figure 9-11c the

andwf PORTA,F

reads PORTA, modifies it, and writes the result back to PORTA, all in one instruction. Because
an interrupt will not break into the middle of an instruction, the integrity of the read-modify-

09_PH_Peatman_861202 6/12/02 3:36 PM Page 128

Section 9.6 External Interrupts 129

write sequence is not compromised. A little later in the sequence of Figure 9-11c, PORTA is
again subjected to a read-modify-write instruction with the same result.

A third solution is shown in Figure 9-11d. In this case, only the read-modify-write

bsf

and

bcf

instructions are used to change PORTA, with the same error-free result.
A fourth solution would have the interrupt service routine set one bit of a flag variable

(rather than RA3 directly). Then each time around the mainline loop, the CPU can check the
flag bit. If it is set, then the CPU sets RA3.

9.6 EXTERNAL INTERRUPTS

The PIC18F452 has three external interrupt inputs:

INT0 INT1 INT2

These are shared with bits 0, 1, and 2 of PORTB. To use one of these as an interrupt source, its control
bits must be set up, using the information of Figure 9-12.

Example 9-6 Set up INT1 as a falling-edge-sensitive interrupt input having low priority.

Solution

The following code will suffice:

bsf TRISB,1 ;Input
bcf INTCON2,INTEDG1 ;Falling-edge sensitive
bcf INTCON3,INT1IP ;Low priority
bcf INTCON3,INT1IF ;Clear flag
bsf INTCON3,INT1IE ;Enable interrupt source
bsf INTCON,GIEL ;Enable low-priority interrupts
bsf INTCON,GIEH ;Enable all interrupts

When a falling edge occurs on the INT1 input, the CPU will set aside what it is doing and vec-
tor through the low-priority interrupt vector at 0x0018 to the low-priority interrupt service rou-
tine, as described in Figure 9-4. Within the INT1handler subroutine, the interrupt flag can be
cleared with

bcf INTCON3,INT1IF

along with the code whose execution has been triggered by the falling edge on the INT1 input pin.

Example 9-7 Use the INT1 pin to generate a low-priority interrupt on both falling and rising
edges.

Solution

Within the INT1 handler include

btg INTCON2,INTEDG1 ;Toggle edge sensitivity

09_PH_Peatman_861202 6/12/02 3:36 PM Page 129

130 Interrupts and Interrupt Timing Chapter 9

�PORTB � � � �

�

��

��

� �

� � �

� � � � �

� � � � �

RB0 or INT0
RB1 or INT1
RB2 or INT2

Pin level can be read

1: Rising edge
0: Falling edge

TRISB 1 1 1
1: RB0/INT0 is an input
1: RB1/INT1 is an input

INTCON
GIEL, global interrupt enable for low-priority interrupts
GIEH, global interrupt enable for all interrupts

INT0IF

RBIF (see Section 9.7)
RBIE (see Section 9.7)

INT0IE

INTCON3
INT1IF

INTCON2
RBIP (see Section 9.7)

RCON 1
IPEN�1: Enable high/low interrupt structure

INTEDG0
INTEDG1

INTEDG2

INT2IF

INT1IE

INT2IP
INT2IE

INT1IP

1: RB2/INT2 is an input

PORTB

PIC18F452

RB2/INT2
RB1/INT1
RB0/INT0

Figure 9-12 External interrupts.

9.7 PORTB-CHANGE INTERRUPTS (PINS RB7:RB4)

A low-to-high change or a high-to-low change on any of the upper four pins of PORTB that are set up
as inputs can be used to generate an interrupt. Circuitry associated with PORTB keeps a copy of the state
of these four pins as they were when the port was last read from or written to. Any subsequent mis-
match caused by the change of an input pin among bits 7, 6, 5, 4 of PORTB will set the RBIF (regis-
ter B interrupt flag) bit in the INTCON register. If interrupts have been set up appropriately (with RBIE,

09_PH_Peatman_861202 6/12/02 3:36 PM Page 130

Problems 131

RBIP, GIEL, and GIEH), then the CPU will be interrupted. An interrupt handler will respond to the
PORTB change. The RBIF flag is cleared by a two-step process:

1. Read PORTB (or write to it) to copy the upper four bits of PORTB into the hardware copy,
thereby removing the mismatch condition.

2. Execute

bcf INTCON,RBIF

Note that once the RBIF flag has been set, the first step in clearing it may be carried out unintentional-
ly if some unrelated routine accesses PORTB. For example,

bsf PORTB,2

will carry out the first step needed to clear the RBIF bit. However, until the second step

bcf INTCON,RBIF

is carried out, the flag will remain set. Consequently, a polling routine will work correctly in spite of reads
and writes of PORTB by unrelated code.

A problem can arise if one of the inputs among the upper 4 bits of PORTB should happen to change at
the exact moment that PORTB is being accessed by unrelated code. In this rarely occurring case, RBIF may
not get set. This problem is a potential source of system malfunction any time PORTB-change interrupts are
used. A better use of this facility arises when the microcontroller is put into its power-saving sleep mode. All
code execution stops. A change on one of the PORTB upper pins can be used to awaken the microcontroller.
Because there will never be a conflict between this occurrence and the execution of an instruction accessing
PORTB (because code execution is stopped), the change on the PORTB pin will never go unnoticed.

PROBLEMS
9-1 Polling sequence. An application requires three interrupt sources having the following
characterizing times:

TA � 10 �s TPA � 2500 �s
TB � 10 �s TPB � 250 �s
TC � 10 �s TBC � 25 �s

For simplicity, assume that these times are the only times arising in the interrupt service rou-
tine (e.g., that all the extra tests and branches of the polling routine take no time).

(a) Show the worst-case timing diagram for IS#C if the interrupts are assigned to the polling
routine in the order A, B, C. Will IS#C be serviced properly under all circumstances?

(b) Repeat with the polling routine order C, B, A.

9-2 Worst-case interrupt timing constraints. Consider the interrupt timing constraints for
the four interrupt sources labeled (9-1) in Section 9-2.

(a) Why does the second constraint, imposed by IS#2, depend on the maximum of T3 and T4?
(b) Why does the constraint imposed by IS#3 equal that imposed by IS#4 if TP3 � TP4? That

is, why does the higher position in the polling sequence not help IS#3?

09_PH_Peatman_861202 6/12/02 3:36 PM Page 131

132 Interrupts and Interrupt Timing Chapter 9

9-3 LoPriISR. In the discussion of Figure 9-4, it was mentioned that the order of restora-
tion of WREG and STATUS at the end of the interrupt service routine matters. Does the
order of setting aside WREG and STATUS at the beginning of the interrupt service routine
matter? Explain.

9-4 LoPriISR assumptions. Consider the assumptions of Figure 9-4c. If several interrupt
handlers need to use indirect addressing, then FSR2 (consisting of the two bytes, FSR2H and
FSR2L) must be shared between them.

(a) Show the code used by IS#1 at the beginning of its handler to load its own pointer from
FSR21H:FSR21L into FSR2.

(b) Show the code used by IS#1 at the end of its handler to save the content of FSR2 back in
FSR21H:FSR21L.

(c) How may cycles does this juggling of the content of FSR2 add to the handler for IS#1?

9-5 LoopTime subroutine for 10 MHz operation. The LoopTime subroutine of Figure 9-
7a causes TMR0CNT to count . . . , 1, 0 → 2, 1, 0 → 2, 1, 0 → 2, . . . in a two-state sequence.

(a) If the rest of the mainline code takes only 2 milliseconds to execute during a given pass
around the mainline loop, what will be the state of TMR0CNT when the LoopTime sub-
routine is entered?

(b) Answer part (a) if the rest of the mainline code takes 7 milliseconds to execute.
(c) Answer part (a) if, on rare occasions, the rest of the mainline code takes 12 milliseconds

to execute. What will be the effect of this on the performance of the LoopTime subroutine?
(d) Rewrite the LoopTime subroutine to test the most-significant bit (MSb) of TMR0CNT.

When this bit becomes set, as TMR0CNT decrements from 0x00 to 0xff, increment
TMR0CNT twice and then return from the subroutine.

(e) Given this change in the LoopTime subroutine, reanswer parts (a), (b), and (c).

9-6 Worst-case latency. Example 9-3 asked for the worst-case latency experienced by a sec-
ond low-priority interrupt due to the Timer0 interrupts of Figure 9-7. This ignored the effect
of a high-priority interrupt service routine. If, in fact, the high-priority interrupt service routine
of Figure 9-10 were also employed in the application, then what would be the worst-case la-
tency experienced by the second low-priority interrupt? Show a worst-case timing diagram.

9-7 Minimum latency. The text at the beginning of Section 9.4 implied that zero latency
could be attained for an interrupt source if the application code never needed to disable high-
priority interrupts to protect a critical region of code and if the “zero latency” interrupt source
were made a high-priority interrupt. Actually, the HiPriISR code of Figure 9-10 exhibits a
nonzero fixed latency, from the time the interrupt’s flag is set until it is executing the first in-
struction of HiPriISR. Three cycles are automatically inserted by the CPU between the flag
setting at the end of one cycle and the execution of a 1 byte instruction at vector address 0x0008.
Four cycles are automatically inserted between the flag setting and the execution of a 2 byte
“goto” instruction. Thus, the first (1 byte) instruction of HiPriISR is executed on the fourth or
fifth cycle after the flag is set.

(a) What will be the latency if the

goto HiPriISR

09_PH_Peatman_861202 6/12/02 3:36 PM Page 132

Problems 133

of Figure 9-10 is replaced by the HiPriISR interrupt service routine itself?
(b) In general, how many instruction words can HiPriISR contain before it impinges on the

low-priority ISR vector?

9-8 Shadow registers. The shadow register mechanism of Figure 9-8 can be used by a high-
priority interrupt simply by terminating HiPriISR with the instruction

retfie FAST

Assuming that LoPriISR is terminated (as it should be) with

retfie

would it matter whether the shadow register mechanism actually worked as in Figure 9-8a for
low-priority interrupts as well as high-priority interrupts? Explain.

9-9 Measuring HiPriISR latency. With the QwikFlash board, jumper the output from
PORTB, bit 1 (RB1) to the high-priority interrupt input, RB0/INT0.

(a) Write a high-priority interrupt service routine beginning directly at address 0x0008 with
the instruction

bcf PORTB,RB1

that simply clears the INT0IF flag and returns from the interrupt.
(b) Write a mainline program that initializes high-priority interrupts from rising edges on the

INT0 input. A

bsf INTCON2,INTEDGØ

instruction will specify that INT0 interrupts are to occur on rising edges. After initializa-
tion has been completed, the mainline loop is to consist of

bsf PORTB,RB1

followed by a dozen nop instructions. This will ensure that a single-word instruction is being
executed when the CPU responds to the interrupt on INT0 caused by this rising edge on
RB1. Then branch back to the

bsf PORTB,RB1

to repeat the operation endlessly.
(c) Run the program and use a scope to monitor the RB1 pulse width. If zero latency is defined

as the pulse width that would arise if the following sequence were executed:

bsf PORTB,RB1
bcf PORTB,RB1

then what is the latency measured by the RB1 pulse width due to the mainline/interrupt
interactions?

9-10 Critical regions. Assume that a 1 byte variable called FLAG has been defined. Specific
bits of FLAG are used to pass information from any one of several interrupt handlers back to
the mainline code to indicate that its interrupt event has occurred and that the mainline code
can take action accordingly, and then clear the specific FLAG bit. FLAG is thus a variable that
is accessed and changed by multiple interrupt handlers as well as the mainline code. Why do the
accesses and changes in the mainline code of this shared resource not constitute a critical region?

09_PH_Peatman_861202 6/12/02 3:36 PM Page 133

